In [ ]:
#first import!
import pyart
from matplotlib import pyplot as plt
%matplotlib inline
In [ ]:
filename = 'data/CHL20100621_222020'
radar = pyart.io.read(filename)
In [ ]:
print radar.fields.keys()
In [ ]:
display = pyart.graph.RadarDisplay(radar)
In [ ]:
fig = plt.figure(figsize = [20,10])
display.plot_rhi('reflectivity',vmax = 64)
plt.gca().set_ylim([0,15])
plt.gca().set_xlim([0,80])
In [ ]:
fig = plt.figure(figsize = [20,10])
display.plot_rhi('differential_reflectivity', vmin = -2, vmax =6)
plt.gca().set_ylim([0,15])
plt.gca().set_xlim([0,80])
In [ ]:
fig = plt.figure(figsize = [20,10])
display.plot_rhi('velocity')
plt.gca().set_ylim([0,15])
plt.gca().set_xlim([0,80])
We can also use some of the IPython interactive widgets to create a interactive display utility for CHILL files!
In [ ]:
from IPython.html.widgets import interact, interactive, fixed
from IPython.html import widgets
In [ ]:
def plot_chill_field(display, field='reflectivity', tilt=0):
fig = plt.figure(figsize = [20,10])
display.plot_rhi(field, tilt)
plt.gca().set_ylim([0,15])
plt.gca().set_xlim([0,80])
In [ ]:
interact(plot_chill_field,display=fixed(display), field=radar.fields.keys(), tilt=widgets.IntSliderWidget(min=0,max=radar.nsweeps-1,step=1,value=0) );
In [ ]:
In [ ]:
In [ ]: